High Rate Electric Field Driven Nanoelement Assembly on an Insulated Surface

INV-1112

INVENTORS: Asli Sirman, Ahmed Busnaina, Cihan Yilmaz, Jun Huang, Sivasubramanian Somu

Description

In prior art, two major techniques are used for assembly of nanoelements. The first one is an electrophoretic assembly involving high rate assembly of nanoelements on a conductive substrate. The second one involves assembly of nanoelements on a conductive or non-conductive substrate but at a much slower rate, being limited by diffusion. This novel process enables a high rate directed assembly of nanoelements on any substrate regardless of conductivity.

Value Proposition

The process:

- Doesn't require a surface treatment and further involves an easy fabrication of nanostructures as compared to prior art techniques
- Has high versatility, which can be controlled through various parameters
- Enables an assembly of different kinds of nanoelements
- Involves a precise assembly of nanoelements with proper pattern geometry
- Involves use of an electric field to overcome the diffusion limitation and to drastically enhance the given assembly rate
- Allows for an assembly of nanoelements at a higher pulling speeds (2-3 orders of magnitude)
- Allows for a significant reduction in the overall assembly time from hours to minutes
- Assembles nanoelements having potential application in high rate development of nanoscale devices such as new electronic devices, sensors, photonic crystals, and advanced batteries

Intellectual Property Status

PCT Application PCT/US2011/062395 Pending Utility Application 13/990,388

License Status

Available for license

Northeastern University

